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Fig. 1: We present AnySkin, a skin sensor made for robotic touch that is easy to assemble, compatible with different robot end-effectors
and generalizes to new skin instances. AnySkin senses contact through distortions in magnetic field generated by magnetized iron particles
in the sensing surface. The flexible surface is physically separated from its electronics, which allows for easy replacability when damaged.

Abstract— While tactile sensing is widely accepted as an
important and useful sensing modality, its use pales in compar-
ison to other sensory modalities like vision and proprioception.
AnySkin addresses the critical challenges that impede the use of
tactile sensing – versatility, replaceability, and data reusability.
Building on the simplistic design of ReSkin, and decoupling
the sensing electronics from the sensing interface, AnySkin
simplifies integration making it as straightforward as putting on
a phone case and connecting a charger. Furthermore, AnySkin
is the first uncalibrated tactile-sensor to report cross-instance
generalizability of learned manipulation policies. To summarize,
this work makes three key contributions: first, we introduce a
streamlined fabrication process and a design tool for creating an
adhesive-free, durable and easily replaceable magnetic tactile
sensor; second, we characterize slip detection and policy learn-
ing with the AnySkin sensor; third, we demonstrate zero-shot
generalization of models trained on one instance of AnySkin
to new instances, and compare it with popular existing tactile
solutions like DIGIT and ReSkin.

I. INTRODUCTION

Touch sensing is widely recognized as a crucial modality
for biological movement and control [1], [2]. Unlike vision,
sound, or proprioception, touch provides sensing at the
point of contact, allowing agents to perceive and reason
about forces and pressure. However, a closer examination
of robotics literature reveals a different narrative. Prominent
works and current state-of-the-art in robot learning primarily
utilize vision sensing in conjunction with proprioception to

† Correspondence to raunaqbhirangi@nyu.edu

train manipulation skills [3], [4], [5], [6], often ignoring
touch. If touch is indeed vital from a biological perspective,
why does it remain a second-class citizen in sensorimotor
control?

To address this question, let’s examine what made cam-
eras ubiquitous in robotics. Three key factors are at play:
cost, convenience, and consistency. Cameras are relatively
inexpensive (under $20), easy to integrate on a wide variety
of robot platforms (e.g. multi-view, depth, ego-centric), and
allow for models trained on them (e.g. object detection,
segmentation) to easily transfer to images captured with
new cameras. In contrast, touch sensors are often costly
due to expensive fabrication processes [7] (e.g., pressure-
based sensors) or the need for high-end components [8]
(e.g., Biotac). They are inconvenient to use on different robot
platforms, being custom-built for specific robot end-effectors
and constrained form factors requiring extensive adaptation
for different shapes [9], [10]. Finally, touch sensors are
inconsistent. Due to boutique fabrication, sensor profiles can
vary significantly even when produced through the same
process [11], [12]. This inconsistency poses a challenge when
transferring tactile-based models across different instances
of the same sensor. This transfer is particularly critical for
touch sensors due to their persistent need for replacement.
Soft sensing interfaces, which are important for touch sensors
to maintain a stable grip, wear out more quickly than hard
interfaces, resulting in more frequent replacements.

In this work we present AnySkin, a new touch sensor that
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is cheap, convenient to use and has consistent response across
different sensor instances. AnySkin builds on ReSkin [11], a
magnetic-field based touch sensor, by improving its fabrica-
tion, separating the sensing mechanism from the interaction
surface, and developing a new self-adhering, self-aligning
attachment mechanism. This allows AnySkin to (a) have
stronger magnetic fields, which significantly improves its
sensor response, (b) be easy to fabricate for arbitrary surface
shapes, which allows easy use on different end-effectors, (c)
be easy to replace the sensor without adversely affecting the
data collection process or the efficacy of models trained on
previous sensors (Fig. 1).

We run a suite of experiments to understand the efficacy of
AnySkin vis-a-viz other prominent touch sensors. Our main
findings can be summarized below:

1) AnySkin can readily be used on a variety of robots
including xArm, Franka, and the four-fingered Leap
hand (See fabrication details in Section IV).

2) AnySkin is compatible with ML techniques for slip
detection and visuo-tactile policy learning for precise
tasks such as inserting USBs (See learning details in
Section V).

3) AnySkin takes an average of 12 seconds to replace
and can be reused after replacement (See replacement
study in Section V-C).

4) Models trained on one AnySkin transfer zero-shot to
a different AnySkin with only a 13% reduction in
performance on a plug insertion task compared to the
43% drop in performance with ReSkin [11] sensors.

AnySkin is fully open-sourced. Videos of fabrication,
attachment, and robot policies are best viewed on our project
website: https://any-skin.github.io/.

II. RELATED WORK

A. Tactile sensing

Existing literature on tactile sensing explores a wide
range of modalities, each with their own set of advantages
and limitations. Capacitative sensors [13], [14], [15], [16]
sense contact through changes in capacitance, offering high
sensitivity. However, they struggle to model shear force and
are prone to breakage due to direct electrical connections
between the circuitry and elastomer. Resistive sensors [7],
[17], [18] are simple and durable, but tend to provide
spatially discrete sensing with low spatial resolution. MEMS-
based sensors [8] offer significant versatility by combining
multiple sensors like audio and IMU sensors for multimodal
feedback in a mm-scale form factor, but tend to use high-
end components and are expensive to fabricate. Optical
sensors [10], [19], [20], [21] capture high-resolution contact
information using cameras to track the deformation of an
elastomer, but often pose hard, stringent limits on the sensor
form factor, due to the physical constraints on the camera
field of view. This complicates integration for a wide range
of applications and significantly increases the effort required
to sensorize surfaces of different shapes and sizes.

Magnetic tactile sensors [22], [23], [24] largely overcome
these limitations due to three salient advantages: (a) sepa-
ration of the sensing electronics from the sensing interface
to improve robustness (b) compatibility with different form
factors, and (c) an ability to capture shear forces [11]. Two
prominent classes of magnetic sensors in robotics right now
- ReSkin [11] and uSkin [23] - use elastomeric sensing inter-
faces with magnetic microparticles and macro-sized magnets
respectively. In this work, we build on ReSkin sensors due
to their lower cost and ease of fabrication.

B. Replaceability for Tactile Sensors

Recent developments in rapid prototyping and elastomer
technology have spurred a substantial rise in the number
of robotic tactile sensors. Most tactile solutions rely on
soft sensing interfaces to enable stable conformal contact
with objects in the environment. Soft interfaces are prone
to frequent wear and tear from contact-rich interactions, but
discussions on replaceability for tactile sensors remain few
and far between. There are two main factors to consider
when evaluating replaceability: (a) the physical ease of
replacing the sensory interface, and (b) signal consistency
when replacing a worn out instance with a new instance.
The former is far more frequently discussed [8], [11], [20],
[25] and resolved by simply separating the sensing inter-
face – generally the damage-prone soft elastomer – from
the sensing electronics which last much longer. The latter,
however, is much less discussed. Prior work in tactile sensing
has found significant variation across different instances of
the same tactile sensor [11], [12]. Higher susceptibility to
wear combined with lower signal consistency across sensor
instances severely restricts the scale of data explored in most
existing work on tactile learning [26], [27].

This effect is even more pronounced for policy learning
where imitation learning as well as reinforcement learning
approaches have been used to show impressive results on
real-world robots [4], [28], [29]. However, both approaches
rely on significant quantities of data, be it demonstration or
online interaction. The necessity of using a single sensor
instance across training and testing has severely limited the
extent of capabilities demonstrated with visuotactile learn-
ing [30], [31]. Recent research has either relied on policy
learning in simulation using simplified models of the tactile
sensor [32], [33], [34], or used analytical models for manual
feature extraction and dimensionality reduction [35], [36].
The former results in a significant dilution in the amount of
tactile information and is therefore restricted to less precise
tasks with simpler contact reasoning. The latter techniques
are often specific to the task they solve, difficult to scale and
show limited generalizability beyond the restrictive settings
they operate in. In this light, signal consistency across
instances is central to building scalable and generalizable
tactile models, and making tactile sensing a ubiquitous
presence in robot learning. In Section V, we quantitatively
demonstrate the improved consistency of AnySkin signal
over ReSkin, and present a direct replaceability comparison
with DIGIT [20] and ReSkin through policy learning.

https://any-skin.github.io/
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(a) Fabrication of AnySkin (b) Top and bottom surfaces of skins

Fig. 2: (a) AnySkin is made by mixing Smooth-On DragonSkin 10 Slow and MQFP-15-7(25µm) magnetic particles in a 1:1:2 ratio, and
curing it in the two-part molds shown above. Cured skins are magnetized using a pulse magnetizer. (b) Skins made with MQP-15-7(-80
mesh) and MQFP-15-7(25µm) particles. Note the concentration of particles at the surface of the former due to the larger particle size.

III. ANYSKIN: COMPONENTS

AnySkin builds on ReSkin [11], a tactile skin composed
of a soft magnetized skin coupled with magnetometer-based
sensing circuitry. By detecting distortions in magnetic fields,
ReSkin measures skin deformations caused by normal and
shear forces [22], [11]. Its adaptability enables integration
across various applications, from robotic hands [26] to arm
sleeves and even dog shoes. AnySkin uses the same 5-
magnetometer circuitry as ReSkin, while introducing key de-
sign and fabrication changes to the skin to improve durability,
repeatability, and replaceability.

• Magnetizing skins post-curing using a pulse magnetizer.
• Introducing physical separation between magnetic elas-

tomer and magnetometer circuit.
• Utilizing finer magnetic particles to achieve a more

uniform particle distribution.
• Implementing a self-aligning design for reduced vari-

ability in the positioning of elastomers and circuitry.
While some of these additions have been used in isolation in
prior work [26], [37], [38], there has been little discussion on
their effect on sensor response. In this section, we elaborate
on the rationale for each choice, followed by a quantitative
comparison of the sensor response in Section V-A.

ReSkin uses a grid of cube magnets during curing to
magnetize the elastomeric skins. While effective, this ap-
proach has several drawbacks, such as producing skins with
relatively weak magnetic fields. As a result, although the
design of ReSkin separates the sensing electronics and the
sensing interface, adding physical distance between the skin
and the sensors significantly weakens the signal, making it
infeasible in reality. In contact-rich tasks, where the sensing
skin undergoes considerable strain, the absence of physical
separation leads to stress being transmitted directly to the
electronics, ultimately compromising their durability.

Additionally, applying a magnetic field during elastomer
curing increases variability in the signal response. Before
curing, magnetic particles are free to move through the liquid
elastomer under the effect of the magnetic field. As a result,
the distribution of particles is influenced by the temporal
evolution of the applied magnetic field, i.e. how you move
the magnets into place, which can be difficult to control

when fabricating. To circumvent these disadvantages, we
propose using a pulse magnetizer to magnetize the skins
post-curing in line with [26], [38], as shown in Fig. 2a. The
pulse magnetizer can apply a large enough magnetic field
to magnetize the dipoles in the magnetic elastomer. Curing
outside the influence of magnetic fields allows for a more
uniform distribution of magnetic particles through the bulk
of the sensor, thereby improving magnetic field consistency.

However, simply changing the magnetization procedure
results in other problems. Curing outside the influence of a
magnetic field causes the particles to settle to the bottom
of the sensing skin due to gravity as shown in Fig. 2b. This
results in lower durability as the skin begins to shed magnetic
particles, particularly during contact-rich interactions. To get
around this problem, we replace the magnetic particles with
much finer particles (details in Section IV-B). The smaller
particles operate in a sufficiently low Reynolds number
regime to allow the elastomer to cure before they can settle
on one surface of the elastomer.

Finally, since ReSkin relies on magnetic field distortions to
measure contact characteristics, sensor response is strongly
influenced by the relative positioning of the magnetic skin
and the magnetometer circuitry (see Section V-A). This
means that loss of adhesion, peeling, or any other relative
motion between skin and circuitry over the life of the sensing
skin can significantly affect the consistency of the signal.
Ideally, we would like the skin to stay adhered until it
needs to be replaced due to wear and tear. Using screws to
adhere the skin as suggested in [11] results in poor durability
due to a stress concentration at the screw-skin interface,
especially in tasks involving shear forces. Using an adhesive
like Silpoxy [20], [26] can be used to create sticker-like skins
that last relatively longer but still tend to peel under repetitive
cyclic loading. With AnySkin, we eliminate the need for
adhesives or fasteners by modifying the design of the skins
to be self-adhering. Additionally, we also eliminate the need
to manually align skin and circuitry, significantly improving
signal consistency as demonstrated in Section V-A.

IV. ANYSKIN: FABRICATION

The overall fabrication procedure follows the general
outline of ReSkin: Magnetic particles and elastomer are



TABLE I: AnySkin’s signal strength is comparable to ReSkin with lower variability across instances, and physical separation from the
magnetometer electronics. Statistics computed over 5 samples of each type (PM: Pulse magnetizer, FP: finer particles, SA: self-aligning).

Experiment ReSkin +PM +FP +SA (AnySkin)
Bxy Bz Bxy Bz Bxy Bz Bxy Bz

Average strength, in µT 1062 302 1818 5212 1602 5784 283 1265
Normalized std. deviation across instances 0.54 0.87 0.34 0.12 0.21 0.15 0.12 0.10
Normalized std. deviation across 1mm misalignments 1.38 1.43 0.25 0.11 0.18 0.07 Self-aligning

mixed in specified ratios; the resulting mixture is poured
into the molds; cured skins are magnetized. The shape of the
fingertip-skin assembly is designed to be triangular as shown
in Fig. 1 to improve reachability. In this section, we elaborate
on the details of the fabrication procedure for AnySkin, and
key changes to the ReSkin fabrication procedure that result
in a new, upgraded sensor.

A. Mold design

The shape of the magnetic skin is dictated by the molds
used for curing. To create self-adhering skins as outlined in
Section III, we present a two-part mold design as shown
in Fig. 2a. We choose a skin thickness of 2 mm following
[11] with a triangular shape for its advantageous form factor
for precise manipulation. All the experiments presented in
this paper use this triangular skin. We also open-source
a mold design CAD tool that generates designs for the
fingertip as well as 2-part molds from just a 2D drawing.
Unlike tactile sensors that require significant engineering for
changes in form factor [20], [10], AnySkin makes it effortless
to diversify your tactile sensor.

B. Elastomer composition

For AnySkin, we mix magnetic microparticles and two-
part polymer (Dragonskin 10 Slow; Smooth-On) in the
same 2:1:1 ratio as ReSkin, while using finer Magnequench
MQFP-15-7(25µm). These particles are about 100x smaller
than the MQP-15-7(-80 mesh) used with ReSkin, and do
not settle before curing, due to their lower Reynolds num-
ber [39]. This ensures that magnetic particles are more evenly
distributed through the volume of the skin, thereby improving
consistency of the signal.

C. Magnetization

ReSkin is magnetized by sandwiching the magnetic elas-
tomer mix between a grid of magnets while it is curing. This
results in higher variance in distribution of magnetic particles
within the core of the skin based on the exact timing of
sandwiching the skins. Drawing from D’Manus [26], we use
a pulse magnetizer for magnetizing the skins after curing
is complete. Separating the magnetizing process from the
curing process allows the skins to cure undisturbed and
maintain a more uniform distribution of magnetic particles.
Furthermore, the magnetic field applied by the pulse mag-
netizer is far stronger than the sandwich of grid magnets.

This results in skins with stronger magnetic fields, which in
turn enables larger separations between magnetic skin and
magnetometer circuitry.

D. Magnetic elastomer fabrication

The final fabrication process follows similar steps as
the ReSkin fabrication process. The molds are first aligned
using the built-in alignment guides and clicked together. We
use plastic clamps to hold the parts together. The two-part
elastomer compound is then mixed and degassed. This is
followed by the addition of magnetic micro particles and
another round of mixing and degassing. Once degassing is
complete, the magnetic elastomer mix is poured through the
mold inlet as shown in Fig. 2 until it emerges at the outlet,
pausing as necessary to allow the mixture to flow through
and fill the entire mold. The filled mold is then placed in a
vacuum chamber and a pressure of 29mm of Hg/in is applied,
again pausing as necessary to prevent overflow as the liquid
bubbles. This pressure is held for 10 minutes before releasing
the vacuum. The molds are allowed to rest for 16 hours,
before prying them open and trimming excess material to
reveal the fully cured AnySkin.

V. EXPERIMENTS AND RESULTS

In this section, we perform extensive experiments to
demonstrate the capabilities of AnySkin as a tactile sensor,
and within the context of policy learning. These experiments
are designed to answer the following questions:

• How do the fabrication changes outlined in Section III
influence signal characteristics?

• Can AnySkin sensors be used to detect slip?
• How does AnySkin’s ease of replaceability compare

with other sensors like DIGIT and ReSkin?
• How does replacing AnySkin affect the performance of

learned policies, and compare with other sensors like
ReSkin and DIGIT?

A. Comparison between ReSkin and AnySkin signal

To quantitatively demonstrate the effect of each of the
fabrication changes listed in Section III towards improving
the consistency of AnySkin, we present the following set of
experiments analyzing the raw signal from the four different
skins shown in Table I, tracking the progression from ReSkin
to AnySkin:



Training objects Data collection setup

Test objects

Fig. 3: Experimental setup used for slip detection experiments, where we train LSTM models on data collected by a Jaco Robot equipped
with the AnySkin sensor (right). We train on a set of training objects (left top) and evaluate it on a set of unseen test objects (left bottom).

1) Effect of pulse magnetizer on signal strength: To un-
derstand the effect of the pulse magnetizer on signal strength,
we take five instances of each skin type and measure the
raw signal corresponding to each instance. We average the
absolute values across the three axes of the five magnetome-
ters, and report the results in Table I. We see a significant
increase in the raw magnetic field for both sets of pulse
magnetized skins. This increase allows us to add a physical
separation between sensing skin and the sensory electronics,
which improves replaceability, as well as repeatability of the
signal as discussed below.

2) Comparison of signal consistency across skins: To
compare signal consistency across the sensing skins, we
compute the standard deviation along each axis of the five
magnetometers across the five instance of each skin type.
To account for the larger signal strengths of the pulse
magnetized skins and allow for a fairer comparison, we
normalize the computed standard deviations by the mean
absolute values along xy and z axes for each skin type.
Aggregated statistics for the different skins are presented
in Table I. Note that finer particles reduce the variability in
sensory signal, which could be attributed to the more uniform
distribution of particles resulting from reduced settling under
the influence of gravity.

3) Effect of alignment on signal consistency: Finally, to
understand the importance of the self-aligning design of
AnySkin, we take a single skin (20mm × 20mm) of each
type except AnySkin, and collect magnetometer data from
placing it at a 1mm offset along each side as shown in Fig. 4.

Normalized standard deviations are computed across the
aligned and misaligned variants across each skin, and results
are reported in Table I. Across different skins, variability
in sensor response from just misalignment is larger than the
cross-instance variability seen with AnySkin, underlining the
importance of the self-aligning design of AnySkin.

Fig. 4: Different circuit-skin alignments evaluated in Section V-A.3

B. Slip Detection

We quantify AnySkin’s ability to detect slip through a
controlled experiment. Our setup consists of a Kinova Jaco
arm and an Onrobot RG-2 gripper with integrated AnySkin.
An object held by a human operator is grasped and lifted up
slowly for 1 second. We use a set of 40 daily objects – 30
for training and 10 evaluation – with varying shapes, weights
and materials. We collect 6 trajectories for each object by
changing the grasping force, width and location. After the
data collection is complete, a human annotator labels the
sequence as slip or no-slip from the corresponding videos.
In contrast with [40], we only use tactile signals as input
to the slip detection model. Some of the objects used, along
with the data collection setup are shown in Fig. 3. The full set
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Fig. 5: We evaluate the replaceability of AnySkin on a set of 3 precision tasks, where capturing the contact interaction using touch is
critical (left). Our experimental setup consists of a Ufactory xArm 7 robot with an AnySkin sensor integrated into the standard gripper
(center). Visual information is captured using three static cameras (1-3) and one egocentric camera (4) attached to the gripper. (right)

of training and test objects as well as videos of the learned
policy can be found on our website.

The data collection frequency for tactile data is 100 Hz.
We subsample the signal by 15 along the temporal axis and
take the first difference. We use an LSTM [41] to train our
slip prediction models. Our model is able to detect slip on
unseen objects with 92% accuracy.

C. Ease of replaceability

We compare the ease of replaceability of AnySkin against
the replaceability of other skins like DIGIT and ReSkin. For
ReSkin, we use two different methods of adhering skins to
the circuit board – screws [11] and adhesive stickers [26].
The skins are compared along two axes – replacement time
and re-usability after replacement – through a user study with
10 non-expert users, and the results are presented in Table II

We find that users find it significantly faster and easier to
replace AnySkin than any of the other skins used for com-
parison. Furthermore, eliminating adhesion allows replaced
skins to be reused without needing the extra hours to reapply
adhesion and allow it to cure.

TABLE II: Comparison of replaceability of different sensors

Sensor Time to replace, in s Reusable

ReSkin (adhesive) 82± 64 No
ReSkin (screws) 236± 64 Yes

DIGIT 58± 22 Yes
AnySkin 12± 5 Yes

D. Replaceability in Policy Learning

The most important consequence of the signal consistency
and replaceability of AnySkin outlined so far, is its ability
to enable policy generalization across different instances
of the skin. In this section, we demonstrate the cross-
instance generalizability of AnySkin across three precise
manipulation tasks. We follow this up with a comparison
of the cross-instance generalizability of policies trained on
DIGIT, ReSkin and AnySkin on the plug insertion task.

1) Experimental Setup: For our policy learning experi-
ments, we train behavior cloning models for a set of precise
manipulation tasks. Our experimental setup is shown in
Fig. 5 and consists of an X-Arm 7DOF robot in a robot cage
as shown in the image. The setup consists of four different
cameras – three fixed to the frame and one egocentric camera
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Fig. 6: Training and test locations of the target objects interacted with for each task. The blue region represents the extent of variation in
the location of the target object, while the green-orange blocks denote held-out test configurations used for evaluation.

attached to the robot’s wrist. We attach an AnySkin sensor
to one of the fingertips and a plain silicone tip to the other.
A Meta Quest 3 and the accompanying joystick controller
are used to teleoperate the robot using Open-Teach [42], an
open-source teleoperation framework.

We demonstrate the replaceability of AnySkin on a set of
three contact-rich manipulation tasks shown in Fig. 5:

• Plug insertion: The robot starts with a plug grasped in
the gripper. The task requires the robot to move to the
first socket on the socket strip and insert the plug. The
location of the socket strip is randomized in a 20 cm ×
7 cm box on the table, and learned policies are tested
on socket locations unseen in the training data.

• Card swiping: The robot starts with a credit card
grasped in the gripper. It must move to the location
of a credit card machine on the table and swipe the
credit card. The location of the credit card machine
is randomized in a 40 cm × 15 cm box and angled
in the range (−30◦ to 30◦) on the table, and learned
policies are tested on card machine locations unseen in
the training data.

• USB insertion: The robot starts with a USB cable
grasped in the gripper. It must move to the location
of the USB port on the table and insert the cable. The
location of the USB port is randomized in a 20 cm ×
15 cm box on the table, and learned policies are tested
on port locations unseen in the training data.

To ensure that learned policies rely on both vision and
tactile information, we vary the configuration of the target
object, ie. the socket strip, the card machine and the USB port
for plug insertion, card swiping and USB insertion respec-
tively in the demonstration dataset. For all the evaluations
presented here, we use a set of held-out configurations of
the target object as shown in Fig. 6.

2) Model Architecture and Training: Our policies are
trained using behavior cloning. For each task presented in
this section, we collect a set of 96 demonstration trajectories,
with data from the four cameras in addition to unchanged
instances of the respective tactile sensor(s) being used. The
BAKU [43] architecture is used as the policy architecture.
BAKU tokenizes each input using a modality-specific en-
coder: image inputs from cameras and DIGITs are encoded
using ResNet-18 [44] encoders, while AnySkin and ReSkin
inputs are encoded using an MLP encoder. An action token

is appended to the set of encoded tokens before passing
the sequence through a transformer encoder, and the output
corresponding to the action token is used to predict actions.
We use action chunking [45] and predict the next 10 actions
at every timestep. For every training setting, we train three
separate models corresponding to three different seeds, and
present aggregated statistics on 10 policy rollouts.

3) Evaluating cross-instance generalizability: To investi-
gate the replaceability of AnySkin in the context of policy
learning, we evaluate behavior cloning policies trained using
a single instance of AnySkin on a new instance. Note
that we use a different training and test skin for each of
the presented tasks to avoid over-indexing on specific skin
instances. Table III presents a comparison between policy
performance with the original and swapped skins for each of
the precise, contact-rich tasks outlined above. Additionally,
we train and evaluate a policy that only takes camera images
as input to serve as a control experiment and verify that
the policies indeed rely on tactile data. We find that across
tasks, performance drops by an average of just 15.6% and
visuotactile policies with swapped skins continue to do
significantly better than purely visual policies. This result
demonstrates the strength and uniqueness of AnySkin as a
tactile sensor for contact-rich manipulation.

4) Comparison across sensors: To better contextualize
the significance of this result, we present a replaceability
comparison with DIGIT [20] and ReSkin [11] sensors. We
collect two additional datasets of 96 demonstration trajec-
tories each for the plug insertion task with these sensors
similar to AnySkin. Replaceability is evaluated by swapping
the training skin for a new skin during evaluation as outlined
in the previous section. Success rates from 10 evaluations
across three seeds for each setting are reported in Table III.

Based on these results, we find that visuotactile policies
trained with ReSkin and AnySkin have similar performance
on solving the plug insertion task. However, when the skin
is replaced, the performance of the ReSkin policy falls
43% to the same level as the camera-only policy, while
the performance of AnySkin policies only drops by 13%.
This transferability is evidence of AnySkin’s superior signal
consistency, and is a significant boost to scaling efforts like
training large tactile models as well as real world deployment
of models trained in the laboratory.

An unexpected result from these experiments was the poor
success rate of policies trained using the DIGIT sensor which



TABLE III: Success rates (out of 10) for policies when swapping
out tactile skins. All statistics computed over 3 training seeds

Task Cameras only Cameras + Skin

Original skin Swapped skin

Cross-instance generalization
Plug Insertion 1.7± 0.6 6.7± 1.5 5.3± 2.5
Card Swiping 2.0± 1.0 7.0± 1.7 6.3± 0.6
USB Insertion 1.7± 1.2 5.7± 1.5 3.0± 1.0

Comparison across sensors – Plug Insertion
AnySkin 1.7± 0.6 6.7± 1.5 5.3± 2.5
ReSkin 1.7± 1.2 6.0± 1.7 1.7± 1.2
DIGIT 1.7± 1.5 2.3± 0.6 1.3± 0.6
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Fig. 7: Pixel-wise difference between two different DIGIT sensor
instances (left) and the maximum difference in response of one
DIGIT sensor on the task of plug insertion across 96 demos (right).

has been shown to be successful in other visuotactile tasks,
perhaps on less precise [32] or less reactive [12] ones, in prior
work. Consequently, while there is still a gap in performance,
we don’t see a significant gap between the poor performance
of the visuotactile policy on the original and swapped DIGIT
skins. However, the high variability across instances of the
DIGIT sensors is previously documented [12], and we find
that a closer look at the DIGIT signal from our plug insertion
dataset indicates that even if it were possible to train more
performant policies, they are unlikely to generalize across
instances. Across the 96 demonstration trajectories from the
plug insertion, we compute the maximum change in pixel
values across channels and across trajectories, and compare
it against the pixel-wise differences between the original and
a swapped instance of the DIGIT sensor in Fig. 7. Since the
maximum change in sensory measurement through the course
of the interaction is comparable to the difference in signal
between two instances, it is unlikely that policies trained on
one sensor will generalize to new instances.

VI. CONCLUSION AND LIMITATIONS

In this paper, we present AnySkin, a new magnetic tactile
sensor. AnySkin is versatile, self-adhering and improves on
signal consistency across different instances of the skin.
Furthermore, to the best of our knowledge, AnySkin is
the first sensor to demonstrate zero-shot generalization of
visuotactile policies to new instances of the tactile skin. As
we work towards developing more capable and performant
models utilizing tactile data, AnySkin is the first step towards
ensuring that large datasets of tactile data can be collected
and effectively used for training useful, generalizable models.

This work opens the door to a host of exciting applications
of AnySkin. It could be incorporated into a large-scale data
collection tool such as UMI [46] or the Stick [47], [29]. Fu-
ture work could also investigate simple calibration schemes
or conditional learning frameworks to completely close the
gap between training and swapped skin instances. Deeper
investigations into standardizing the fabrication procedure
could also help further improve signal consistency.

Despite its potential, AnySkin still inherits some of the
drawbacks of the ReSkin sensor, primary among them being
interference from magnetic and ferromagnetic objects in the
environment. Using machine learning approaches for noise
reduction in magnetic sensors [38] or improving the skin
design to incorporate a Faraday cage could help resolve these
difficulties, and take tactile sensing one step closer to being
a first-class citizen in robotics.

Our experiments were performed using DIGIT sensors
with the standard, commercially available fingertip gel, but
prior work has found some success learning visuotactile
policies using optical sensors with dotted skins [48], [49].
An interesting direction for future work could be comparing
the performance of behavior cloning policies using different
gel tips for optical sensors. However, while this may im-
prove learning performance with a single skin, cross-instance
generalizability might still require significant changes in the
fabrication of optical sensors.
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